Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electron Transport in InAsSb-Based nBn Photodetector Structures

Identifieur interne : 000D76 ( Main/Repository ); précédent : 000D75; suivant : 000D77

Electron Transport in InAsSb-Based nBn Photodetector Structures

Auteurs : RBID : Pascal:13-0118031

Descripteurs français

English descriptors

Abstract

Magnetic-field-dependent Hall-effect measurements and high-resolution mobility spectrum analysis have been employed to determine electronic transport parameters in InAsSb-based nBn structures. Three samples were studied, with nominally identical epitaxial layer structure but with barrier layers of different compositions. Two separate well-defined electron species, associated with the two distinct doping regions, were identified. The extracted electron concentrations were found to be in excellent agreement with the nominal doping density of the absorber and the back contact layers for all samples studied. For all samples, electron mobility appears to be limited by impurity scattering, whereas the relatively small differences in extracted mobility values between samples are likely to be due to unintentional variations in ionized impurity and/or defect concentration in the samples.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0118031

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electron Transport in InAsSb-Based nBn Photodetector Structures</title>
<author>
<name sortKey="Umana Membreno, G A" uniqKey="Umana Membreno G">G. A. Umana-Membreno</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Electrical, Electronic and Computer Engineering, The University of Western Australia</s1>
<s2>Crawley, W.A. 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Crawley, W.A. 6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Klein, B" uniqKey="Klein B">B. Klein</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for High Technology Materials, The University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Smith, E P G" uniqKey="Smith E">E. P. G. Smith</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Raytheon Visions Systems</s1>
<s2>Goleta, CA 93117</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Raytheon Visions Systems</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Antoszewski, J" uniqKey="Antoszewski J">J. Antoszewski</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Electrical, Electronic and Computer Engineering, The University of Western Australia</s1>
<s2>Crawley, W.A. 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Crawley, W.A. 6009</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Plis, E" uniqKey="Plis E">E. Plis</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for High Technology Materials, The University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Johnson, S M" uniqKey="Johnson S">S. M. Johnson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Raytheon Visions Systems</s1>
<s2>Goleta, CA 93117</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Raytheon Visions Systems</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Krishna, S" uniqKey="Krishna S">S. Krishna</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Center for High Technology Materials, The University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Albuquerque, NM 87106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rhiger, D R" uniqKey="Rhiger D">D. R. Rhiger</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Raytheon Visions Systems</s1>
<s2>Goleta, CA 93117</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Raytheon Visions Systems</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Faraone, L" uniqKey="Faraone L">L. Faraone</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Electrical, Electronic and Computer Engineering, The University of Western Australia</s1>
<s2>Crawley, W.A. 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Crawley, W.A. 6009</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0118031</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0118031 INIST</idno>
<idno type="RBID">Pascal:13-0118031</idno>
<idno type="wicri:Area/Main/Corpus">001131</idno>
<idno type="wicri:Area/Main/Repository">000D76</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0018-9383</idno>
<title level="j" type="abbreviated">IEEE trans. electron devices</title>
<title level="j" type="main">I.E.E.E. transactions on electron devices</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorbent material</term>
<term>Absorber</term>
<term>Barrier layer</term>
<term>Defect density</term>
<term>Doping</term>
<term>Electron density</term>
<term>Electron mobility</term>
<term>Hall effect</term>
<term>High resolution</term>
<term>Impurity</term>
<term>Impurity scattering</term>
<term>Indium antimonides</term>
<term>Magnetic field</term>
<term>Niobium nitride</term>
<term>Photodetector</term>
<term>Spectrum analysis</term>
<term>Ternary compound</term>
<term>nBn structure</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Photodétecteur</term>
<term>Champ magnétique</term>
<term>Effet Hall</term>
<term>Haute résolution</term>
<term>Analyse spectre</term>
<term>Couche barrière</term>
<term>Dopage</term>
<term>Densité électron</term>
<term>Absorbeur</term>
<term>Matériau absorbant</term>
<term>Mobilité électron</term>
<term>Diffusion impureté</term>
<term>Impureté</term>
<term>Densité défaut</term>
<term>Antimoniure d'indium</term>
<term>Composé ternaire</term>
<term>Nitrure de niobium</term>
<term>InAsSb</term>
<term>NbN</term>
<term>Structure nBn</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Magnetic-field-dependent Hall-effect measurements and high-resolution mobility spectrum analysis have been employed to determine electronic transport parameters in InAsSb-based nBn structures. Three samples were studied, with nominally identical epitaxial layer structure but with barrier layers of different compositions. Two separate well-defined electron species, associated with the two distinct doping regions, were identified. The extracted electron concentrations were found to be in excellent agreement with the nominal doping density of the absorber and the back contact layers for all samples studied. For all samples, electron mobility appears to be limited by impurity scattering, whereas the relatively small differences in extracted mobility values between samples are likely to be due to unintentional variations in ionized impurity and/or defect concentration in the samples.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0018-9383</s0>
</fA01>
<fA02 i1="01">
<s0>IETDAI</s0>
</fA02>
<fA03 i2="1">
<s0>IEEE trans. electron devices</s0>
</fA03>
<fA05>
<s2>60</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electron Transport in InAsSb-Based nBn Photodetector Structures</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>UMANA-MEMBRENO (G. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KLEIN (B.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SMITH (E. P. G.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ANTOSZEWSKI (J.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PLIS (E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>JOHNSON (S. M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KRISHNA (S.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>RHIGER (D. R.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>FARAONE (L.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Electrical, Electronic and Computer Engineering, The University of Western Australia</s1>
<s2>Crawley, W.A. 6009</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center for High Technology Materials, The University of New Mexico</s1>
<s2>Albuquerque, NM 87106</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Raytheon Visions Systems</s1>
<s2>Goleta, CA 93117</s2>
<s3>USA</s3>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>510-512</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>222F3</s2>
<s5>354000503716900770</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>13 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0118031</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>I.E.E.E. transactions on electron devices</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Magnetic-field-dependent Hall-effect measurements and high-resolution mobility spectrum analysis have been employed to determine electronic transport parameters in InAsSb-based nBn structures. Three samples were studied, with nominally identical epitaxial layer structure but with barrier layers of different compositions. Two separate well-defined electron species, associated with the two distinct doping regions, were identified. The extracted electron concentrations were found to be in excellent agreement with the nominal doping density of the absorber and the back contact layers for all samples studied. For all samples, electron mobility appears to be limited by impurity scattering, whereas the relatively small differences in extracted mobility values between samples are likely to be due to unintentional variations in ionized impurity and/or defect concentration in the samples.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Photodétecteur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Photodetector</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Fotodetector</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Champ magnétique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Magnetic field</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Campo magnético</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Effet Hall</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Hall effect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Efecto Hall</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Haute résolution</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>High resolution</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Alta resolucion</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Analyse spectre</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Spectrum analysis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Análisis espectro</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Couche barrière</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Barrier layer</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Densité électron</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Electron density</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Densidad electrón</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Absorbeur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Absorber</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Absorbente</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Matériau absorbant</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Absorbent material</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Material absorbente</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Mobilité électron</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Electron mobility</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Movilidad electrón</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Diffusion impureté</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Impurity scattering</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Impureté</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Impurity</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Impureza</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Densité défaut</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Defect density</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Densidad defecto</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Antimoniure d'indium</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium antimonides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Nitrure de niobium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Niobium nitride</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Niobio nitruro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>InAsSb</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>NbN</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Structure nBn</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>nBn structure</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>15</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>15</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>15</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Dispositif optoélectronique</s0>
<s5>16</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Optoelectronic device</s0>
<s5>16</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Dispositivo optoelectrónico</s0>
<s5>16</s5>
</fC07>
<fN21>
<s1>091</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000D76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0118031
   |texte=   Electron Transport in InAsSb-Based nBn Photodetector Structures
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024